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Context: 

The integration of various materials and the possibility of realising a wide range of optical functions 

on a chip through the advanced miniaturisation of guided optics in silicon photonics offer very broad 

opportunities for a continuum of studies ranging from fundamental physics to applications [1]. A 

recent trend of the field has been devoted to the investigation of third-order optical nonlinearities 

for the realization of integrated light optical sources, including frequency comb or supercontinuum 

sources needed to on-chip metrology/sensing and quantum communications [2,3]. 
 

The problem to be solved: 

The physics of optical pulse propagation in an optical waveguide is described by solving a highly 

nonlinear partial differential equation called the Generalized Nonlinear Schrödinger Equation 

(GNLSE). This equation, that includes the dispersion and the effective nonlinearity of the 

constituent materials as well as the waveguide conditions responsible for a tight confinement of 

light in small cross-sections (wavelength2), provides solutions that are dramatically sensitive to 

the input beam parameters and to any variation of the waveguide properties. Both the 

propagation dynamics and the output spectral and temporal characteristics strongly depend on the 

injected optical pulse and to any variation of the waveguide cross-section along the propagation of 

light. On top of that, matching input beam conditions and/or modification of the waveguide profile 

along the light propagation path to achieve a given output pulse is a very complex nonlinear 

multivariate problem that can solved rigorously within the interaction picture framework [4]. 

Fig. 1 shows a typical example devoted to optical pulse compression in an optical fibre based on 

the compression mechanism of high order solitons [5]. 

 
 

This approach is computationally demanding, creates a severe bottleneck in simulating 

various physical situations of interest, and precludes advanced optimization schemes to design 

experiments in real time or identify no intuitive input pulse conditions (time width, chirp, pulse 

shape) and optical waveguide profiles matching an inverse optical problem logic. In this context, 

building a GNLSE efficient, fast, accurate predictor applicable to highly nonlinear and 

complex optical pulse propagation conditions is highly desirable for a large amount of 

applications. 

Fig.1: 

(from [5]) 
 

Simulation: 

In (a) time and (b) frequency domains of an initial 

Gaussian optical pulse centred at 1540nm light 

wavelength, with a peak power of 21W and initial 

FWHM of 1.2ps, assuming 1.7dB/m of propagation 

loss and fiber dispersion parameters of 

2=-79ps2/km, 3=-0.079ps3/km, 4=0.0023ps4/km. 

The dashed line represents the location of optimal 

compression. 

(c) and (d) provide the simulated time trace and 

optical spectrum at the optimal compression point 

along light propagation, along with the light 

coherence statistical parameter |𝑔12(𝜆)|. 
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Recent works have been performed in this direction in the frame of pulse propagation in fibre optics. 

Different architectures of neural networks have been proposed to learning the complex input/output 

optical pulse properties characterizing a nonlinear optical fibre. In [6], recurrent neural networks 

(RNN) were considered, as shown in Fig. 2. This work demonstrated the efficiency of RNN to learn 

the tested complex dynamics corresponding to different physical configurations including high-

order soliton compression and supercontinuum generation, respectively. The same co-authors later 

implemented a simpler feed-forward neural network scheme to mimic the supercontinuum 

generation in a highly nonlinear optical fiber [7]. 
 

 
 

 

 

   THE PURPOSE OF THE PROPOSED RESEARCH PROJECT IS TO: 

1) Going farther than the published works that have been mostly devoted to low index contrast 

waveguides (fibres) in view to investigating the optical pulse dynamics in the much 

stronger index contrast waveguides of silicon photonics 

2) Propose other neural network architectures (NNA), investigate their behaviours, and 

compare their characteristics 

3) Demonstrate the efficiency of NNA to model light propagation in optical waveguides with 

arbitrary chirped cross-sections along the light propagation (z-direction) 

4) Solve the inverse problem in nonlinear optical waveguides through the use of neural 

networks in various situations of physical interest, i.e. predict the waveguide cross-section 

profile along z, as well as the input optical pulse properties – time width, chirp, time envelop 

shape, chirp -, to match any desired output pulse characteristics after a given propagation 

distance 

______________________________________________________________________________ 

For any question, you can send an email to eric.cassan@universite-paris-saclay.fr 
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Fig.2: Recurrent neural network architecture proposed in [6]. 
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